Biofocus' Molecular Diagnostic Panel

Dr. Lothar Prix
Biofocus GmbH, Recklinghausen, Germany
www.biofocus.de

- Molecular detection of infectious diseases
- Human & veterinary hereditary diseases / genetic predisposition
- Molecular Oncology

Aims of Molecular Oncology

Detection von Circulating Tumor Cells in blood
 (CTCs) → "residual disease"

 Determination of "drug target"-genes and resistance-markes

→ Goal: personalized therapy

CTCs:

rare: 100 – 1000 per ml blood

sparely: 1 CTC in 10^6 to 10^7 WBCs

Isolation of CTCs is challenging

Isolation of CTCs from blood by positive selection

blood sample

CTC isolation

Molecular characterisation

Immuno absorption

(eg. magnetic beads)

Molecular identification of captured cells as CTCs

- Isolation of RNA from captured CTCs
- Differential Gene expression CTCs ⇔ Blood
- Molecular Tumor markers by quantitative real-time PCR:
 - Cytokeratins (CK19, CK20)
 - Cell cycle genes (c-myc, erbb2, telomerase, survivin)
 - tissue specific genes: PSA (prostate), G250 (renal), MART (melanoma)

■ Four-Marker assay; Carcinoma (e.g. CK19, ERBB2, C-MYC, Telomerase):

	≥1 Marker positive	≥ 2 Marker positive
	positive	positive
Normal-	3/70	1/70
patients n = 70	4.3 %	1.4 %
Tumor CA Patients n = 200	159/200 80 %	121/200 60 %

Detection rate of CTCs

→ Average ca. 80 % in advanced tumors

Molecular characterization of CTCs

→ Gene expression analysis in CTCs for prediction of therapy resistance:

Drug Metabolizing Genes

Activation, Degradation, Detoxification

"Drug-Target" Genes

Cellular function inhibited by the drug

Genetic factors of Chemo-Resistance

■ Different drug-targets and metabolizing genes depending on drug

Drugs	Target	Resistance
Anthracyclines	Topoisomerase II	Topo II downregulation
Irinotecan	Topoisomerase I	Topo I downregulation
Platinum comp.	DNA	induction of ERCC1 repair
Nitroso-Ureas	DNA	induction of MGMT repair
Methotrexate	Folate metabolism	overexpression of DHFR
5-Fluorouracil	Nucleotide/DNA synthesis	overexpression of TS / DPD

Multi-resistance in chemo-treated vs. non-treated patients

multidrug resistance factors: MDR1, MRP1, GST/GCS

Impact of resistance factors on relapse-free-survival

GST-π; γ-GCS; MDR1 (DNA; RNA); MRP; DHFR; TS; bcl-2/bax

Therapy: Prediction and Outcome

Tumor type	Therapy	Test-Result	clinical outcome
Mamma	Mitoxantron	resistent	Progress
Colon	5-FU	resistent	Progress
Stomach	Mitomycin + 5-FU + Cyclophpos.	Mitomycin: resistent Cyclophpos.: resistent 5-FU: intermediate	Progress / death
Ovar	Gemcitabine + Cyclophpos.	Gemcitabine: resistent Cyclophpos: sensitiv	Progress / death
Mamma	MTX + Cisplatin	MTX: resistent Cisplatin.: resistent	Partial response
Colon	Oxaliplatin	sensitiv	Partial response
Mamma	MTX + Gemcitabin	MTX: sensitiv Gemcitabin: sensitiv	Partial response
Mamma	MTX + 5-FU	MTX: sensitiv 5-FU: intermediate	Partial response
Mamma	Herceptin	sensitiv	Partial response
Pancreas	Herceptin	sensitiv	Partial response
Thymoma	Epirubicin + Mitomycin + 5-FU	Mitomycin: sensitiv 5-FU: sensitiv Epirubicin: intermediate	Complete response
Melanoma	Sorafenib	sensitiv	Complete response

Limitations of the prediction model

Resistance ⇔ **Sensitivity**:

- Generally it is easier to predict resistance than response
- Focus on major resistance pathways only

Alternative Therapies:

Clinical response is observed despite positive resistance marker

→ Modulation of the resistance genes by alternative agents

Alternative agents can modulate resistance genes:

MDR → Curcumin, Acetogenin, Haelan

MRP → Artemisinin, Haelan

GST → Ellagic acid, Curcumin

Immune function testing by Cellular NK-Test

Assay principle

Cellular NK-test

Testing of immune stimulative agents

w/o stimulationafter stimulation

Agent	Included in the assay
Thymus-extract	routinely
Factor AF2	routinely
Iscador mistletoe-extract	routinely
Lektinol mistletoe-extract	routinely
Helixor mistletoe-extract	upon request
Eurixor mistletoe-extract	upon request
Fraxini mistletoe-extract	upon request
Carnivora	upon request
Interleukin 2	upon request

Testing for alternative agents

Testing is possible for alternative agents with known genetic basis of action:

Agent	
Quercetin	Artemsinin derivatives
IP6 (Inositol-6-Phosphate)	Amygdalin B17
C-statin	Vitamin C
Dammarane sapogenins	Indol-3-carbinol (I3C)
Acetogenin, Graviola	Taurolidine
Haelan951	Ellagic Acid
Curcumin	Arglabin, Laetrile

Measuring expression of Rhodanese and COX2 expression in tumor cells aids in selection of Amygdalin therapy

Testing for alternative agents e.g. Amygdalin B17

1. Suppressing expression of COX2 (Cyclooxigenase 2)

COX2:

- Inflammation
- Tumor promotion

CANCER CELL high levels of COX2

Amygdalin B17

Amygdalin B17 suppresses COX2 expression

Testing for alternative agents e.g. Amygdalin B17

2. Detoxification by Rhodanese

Overexpression of rhodanese in CTC is obviously rare

Rhodanese level	Observed in % of CTCs (n=45)
underexpressed	43 %
base-level (equal to normal cells)	51 %
overexpressed	6 %